4-^t BUTYL IODOXYBENZENE : AN EFFECTIVE OZONE EQUIVALENT

S. Ranganathan, D. Ranganathan and S.K. Singh

Department of Chemistry, Indian Institute of Technology Kanpur 208016, India

Summary: The specifically designed reagent, 4^{-t} Butyl iodoxybenzene (<u>1</u>)soluble in hot, benzene, chlorobenzene and nitrobenzene- cleaves a range of π bonds to carbonyl compounds in 50-75% isolated yields. In every case, the reagent <u>1</u> is transformed to 4^{-t} butyl iodobenzene (<u>2</u>) in 90-97% yields, which can be recycled.

Our extended search for an effective ozone equivalent led to the identification of iodoxybenzene $(\underline{3})$ as a reagent of promise¹. A severe limitation of $\underline{3}$ was its insolubility in most non-polar solvents. This problem has now been overcome with the novel reagent, 4^{-t} butyl iodoxybenzene $(\underline{1})$, whose preparation and reaction profile are summarized below:

 4^{t} Butyl iodoxybenzene $(\underline{1})^{2}$ is a stable and crystalline compound mp 217-221°C (<u>CAUTION</u>³). The estimated⁴ solubility of <u>1</u> in hot, benzene, chlorobenzene and nitrobenzene are, respectively, 0.2%, 6% and 9%. Oxygen transfer to the substrates are accomplished in hot chlorobenzene or nitrobenzene⁵. TABLE I summarizes the results of the reaction <u>1</u> with a representative selection of acceptors. The transformations brought about with <u>1</u> and a range of substrates are clean⁶, the products directly isolable and the resulting <u>2</u> effectively recycled. Therefore 4^{-t} butyl iodoxybenzene should turn out to be a reagent of promise and utility not only with reference to the oxidation of hydrocarbons but others as well.

TABLE I

substrate 4- ^t BuC	6 ^H 4 ^{IO} 2	2 solvent	time	product	4- ^t BuC ₆ H ₄ I
<u>(mmo1)</u> mm	o1	(m1)	<u>hr</u>	(%_yield)	%_yield ⁷
bis-cyclohexylidene ⁸ (2)	2.5	PhC1 (10)	2	cyclohexanone (59)	9 1
E-stilbene (1)	2.0	PhC1 (8)	6	benzaldehyde (67) + benzil (20)	94
9-benzylidene fluorene (0.5)	0.5	PhC1 (8)	7	fluorenone (50) + benzaldehyde (45)	92
diphenylacetylene (2)	2.0	PhC1 (8)	18	benzil (65)	91
diphenylacetylene (1)	1.5	PhN0 ₂ (2)	10	benzil (57)	-
phenanthrene (1)	2.0	PhC1 (5)	10	phenanthra quinone (75)	97
anthracene (0.5)	1.0	PhN0 ₂ (4)	7	anthraquinone (59)	-
tetralin (6)	1.5	PhC1 (10)	6	α -tetralone (60) ⁹	97

REFERENCES AND NOTES

- S. Ranganathan, D. Ranganathan and P V Ramachandran, Tetrahedron, <u>40</u>, 3145 (1984).
- 2. 4- Butyl iodoxybenzene (1): Compounds 1, 2, and 4 are novel.

t 4- Butyl Iodobenzene (2): 4- BuPh (59 mmol)+I₂ (25 mmol) + HIO₃ (111 mmol) +AcOH (18 ml) + H₂O (3 ml) reflux 8 hr; decant, decanted portion admix with, H₂O (30 ml) + MeOH-KOH (20%, 30 ml); reflux 0.5 hr, cool; wash lower 2 with H₂O (x 3), dry (MgSO4) and distil; yield 11 g (71%), bp 114°/ 0.05 torr; nmr : δ : CCl₄ : 1.3 (9H), 7.03 (d, J=8 Hz,2H), 7.5 (d, J=8 Hz,2H). 4- Butyl iodobenzenedichloride (4): Pass dry Cl₂ through ice-salt cooled, stirred 2 (10 mmol) in dry hexane (15 ml) till excess; collect precipitated yellow 4, wash with chilled hexane, dry; yield 3.2 g (97%), mp 84°C; stable:cool and dry; soluble: CHCl₃, PhH. nmr: δ : CDCl₃: 1.36 (9H), 7.4 (d, J=8Hz,2H), 8.06 (d, J=8Hz,2H). 4- tButyl iodoxybenzene (1): (the following procedure gives best results): A floating yellow suspension of 4 (30 mmol) on Aq NaOCl (75 ml; from 75 ml 5N NaOH+ 12 g Cl₂) + AcOH (0.2 ml) keep with intermittant shaking at rt 1.5 hr; heavy yellow precipitate formed (?); then keep mixture 60-70°C, with intermittant shaking 0.5 hr; yellow precipitate transformed to light, white, frothy 1; cool, filter, wash H₂O (x 5), air dry, wash CHCl₃ (x3), dry; yield 7.5 g (86%), mp 217-221°C (EXPLODES); calcd for C₁₀H₁₃IO₂: C, 41.09, H, 4.45; found: C, 40.8, H, 4.31%.

- 3. During numerous oxidations with 1 no exploision has occurred. However, we urge that caution be exercised and no reaction be done without solvent.
- 4. Very rough estimates since $\underline{1}$ decomposes slowly in hot solvents leading to $\underline{2}$.
- 5. All reactions at 130-140°C (TABLE I). Work-up: PhCl evaporated in vacuo; chromatograph silica gel column made in hexane; <u>2</u> eluted with hexane, products with PhH: hexane.
- 6. Product yields are not optimized; this would require a study of the extent of decomposition of 1 to 2 and consequent adjustment of the reagent needed.
- 7. All yields are of isolated pure compounds.
- Very conveniently made by the procedure of, D.H.R. Barton and B.J.Willis, J. Chem. Soc., Perkin, I, 309 (1972).
- 9. Yield based on reagent.

(Received in UK 30 July 1985)